Electronic Theses and Dissertations

Author

Binyam Tadese

Date of Award

2012

Document Type

Thesis

Degree Name

M.S. in Engineering Science

First Advisor

Craig J. Hickey

Second Advisor

Christopher Mullen

Third Advisor

Chung Song

Relational Format

dissertation/thesis

Abstract

The detection of internal seepage zones in embankments (dams and levees) by geophysical seismic techniques such as seismic refraction is limited by a number of factors. Some factors are associated with inversion and smoothing problems during processing, while others are associated with the natural characteristics of embankments and seepage anomalies. In this research, changes in the seismic response associated with: embankment soil compositions and moisture, characteristics of the seepage zone, presence of water in the reservoir, and shape of embankment was studied via 2D and 3D finite element (FE) embankment models. Artificial reflections from external boundaries and numerical dispersion were first examined in the frame work of COMSOL. A combination of an absorbing layer and dashpot elements produced minimal reflections. The numerical dispersion study suggested a mesh composed of 5 quartic (4th order) elements per wavelength and a time step of 1/4 of 1/20 of the minimum period to be optimal. COMSOL models were verified by comparing to the analytic solutions for a transient point source in an unbounded media. The agreement of arrival times from a point source and a line source were also ascertained for an elastic half space model. The seismic response of dry and wet seepage zones in an embankment were evaluated for 2D longitudinal and transverse models. The zones considered in this study do not cause substantial deviations on the first arrival times but behave as scatters and their signatures were, predominantly, wavelet distortion. Wet (high impedance) zone produces a higher amplitude wavelet that is delayed in time, whereas a dry (low impedance) zone produces an earlier arriving lower amplitude, first arriving wavelet. Processing algorithms such as tomography that can incorporate such finite frequency effects may improve the detection of internal seepage in earthen embankments. The results from preliminary 3D models suggest that the water in the reservoir and the embankment's 3D shape have no effect on the first arrival times of seismic waves.

Concentration/Emphasis

Civil Engineering

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.