"Covering Systems of Polynomial Rings Over Finite Fields" by Michael Wayne Azlin
Electronic Theses and Dissertations

Date of Award

2011

Document Type

Thesis

Degree Name

M.S. in Mathematics

First Advisor

Micah B. Milinovich

Second Advisor

Sandra Spiroff

Third Advisor

William Staton

Relational Format

dissertation/thesis

Abstract

In 1950 Paul Erdos observed that every integer belonged to a certain system of congruences with distinct moduli. He called such systems of congruences covering systems. Utilizing his covering system, he disproved a conjecture of de Polignac asking, “for every odd k, is there a prime of the form 2n + k?” Examples of covering systems of the integers are presented along with some brief history and a sketch of the disproof by Erd?s. Open conjectures concerning covering systems and best known results of attempts to prove these conjectures are given. Analogies are drawn between the integers and Fq[x], and covering systems are defined in Fq[x]. Examples of covering systems in the particular case of F2[x] are presented along with some restrictions as to their construction. Also presented is a conjecture concerning covering systems of F 2[x] analogous to one of Erd?s concerning covering systems of the integers.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.