Electronic Theses and Dissertations

Date of Award

2016

Document Type

Dissertation

Degree Name

Ph.D. in Mathematics

Department

Mathematics

First Advisor

Hailin Sang

Second Advisor

Martial Longla

Third Advisor

Yixin Chen

Relational Format

dissertation/thesis

Abstract

We study the ideal variable bandwidth kernel density estimator introduced by McKay (1993) and the plug-in practical version of the variable bandwidth kernel density estimator with two sequences of bandwidths as in Ginè and Sang (2013).We estimate the variance of the variable bandwidth kernel density estimator. Based on the exact formula of the bias and the variance of the variable bandwidth kernel density estimator, we develop the optimal bandwidth selection of the true variable bandwidth kernel density estimator. Furthermore, we present the central limit theorem of the true variable bandwidth kernel density estimator. We also propose a new variable bandwidth kernel regression estimator and estimate the bias and propose the central limit theorems for its ideal and true versions. For the one dimensional case, the order of the bias and variance is same for the variable bandwidth kernel density estimator and for the proposed variable bandwidth kernel regression estimator. Since we use the order of the bias and variance to find the optimal bandwidth, the optimal bandwidth for these estimators are also the same. Comparing the integrated mean square error of the variable bandwidth kernel density estimator (the variable bandwidth kernel regression estimator) with the classical kernel density estimator (the Nadaraya-Watson estimator), we find that the variable bandwidth kernel estimators have a faster rate of convergence. Furthermore, we prove that these variable bandwidth kernel estimators converge to normal distribution.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.