Electronic Theses and Dissertations

Date of Award

2017

Document Type

Dissertation

Degree Name

Ph.D. in Mathematics

Department

Mathematics

First Advisor

Erwin Mina Diaz

Second Advisor

Cecille Labuda

Third Advisor

Qingying Bu

Relational Format

dissertation/thesis

Abstract

We investigate the asymptotic behavior of polynomials orthogonal over a symmetric arc of the unit circle with respect to a generalized Jacobi-type weight. Full asymptotic expansions for the orthogonal polynomials are obtained at every point of the complex plane. Our method of proof is based on a characterization of the orthogonal polynomials as solutions of a 2X2 matrix Riemann-Hilbert problem, which extends to the unit circle the original Riemann-Hilbert characterization for orthogonal polynomials on the real line, first discovered by Fokas, Its, and Kitaev. In order to extricate the behavior of the polynomials from its Riemann-Hilbert matrix representation, we follow the steepest descent method of matrix transformations developed by Deift and Zhou.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.