"Periodicities for Taylor Coefficients of Half-Integral Weight Modular " by Larry Rolen
 

Document Type

Lecture

Publication Date

2-21-2020

Abstract

Congruences of Fourier coefficients of modular forms have long been an object of central study. By comparison, the arithmetic of other expansions of modular forms, in particular Taylor expansions around points in the upper-half plane, has been much less studied. Recently, Romik made a conjecture about the periodicity of coefficients around τ = i of the classical Jacobi theta function. Here, in joint work with Michael Mertens and Pavel Guerzhoy, we prove this conjecture and generalize the phenomenon observed by Romik to a general class of modular forms of half-integral weight.

Relational Format

presentation

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.