"Random Geometry in the Spectral Measure of the Circular Beta Ensemble" by Tom Alberts
 

Document Type

Lecture

Publication Date

3-26-2015

Abstract

The Circular Beta Ensemble is a family of random unitary matrices whose eigenvalue distribution plays an important role in statistical physics. The spectral measure is a canonical way of describing the unitary matrix that takes into account the full operator, not just its eigenvalues. When the matrix is infinitely large (i.e. an operator on some infinite-dimensional Hilbert space) the spectral measure is supported on a fractal set and has a rough geometry on all scales. This talk will describe the analysis of these fractal properties. Joint work in progress with Raoul Normand and Balint Virag.

Relational Format

presentation

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.