Investigating the robustness of wireless sensor networks
Document Type
Lecture
Publication Date
11-2-2023
Abstract
Human designs are susceptible to being corrupted by errors or failures. Many social and natural systems have strange abilities to resist failures and maintain basic functions even when some of their components fail. Robustness is a key question in many disciplines, such as biology, economics, and security, just to mention a few. The evolution of telecommunications nowadays has made the world a small village. The arrival of 5G and 6G has boosted the digitization and proliferation of the Internet of Things, with sensors as key elements. Depending on the environment where sensors are deployed, these networks are subject to several constraints, necessitating the design of robust systems for them. In this project, a robustness analysis of complex networks, particularly sensor networks, was done. Sensor devices here are viewed as vertices, the wireless link between the nodes as edges, and the information exchange between the nodes as weights. We did an investigation of the effect of node removal in complex networks. To quantify or assess the level of robustness of wireless sensor networks, we used the inverse percolation and the Laplacian matrix fielder value. We interpret the results of our experiments. and proposed some topologies to be used in building robust sensor networks. Python programming language was used for simulations and computations. In addition, we use network software such as Pajek and yED for visualization and analysis.
Relational Format
presentation
Recommended Citation
Longla, Thierry Taning, "Investigating the robustness of wireless sensor networks" (2023). Probability & Statistics Seminar. 12.
https://egrove.olemiss.edu/math_statistics/12