Faculty and Student Publications

Document Type

Article

Publication Date

1-1-2020

Abstract

© 2020 Courtney Vanderford et al., published by De Gruyter. Standard Gini correlation plays an important role in measuring the dependence between random variables with heavy-tailed distributions. It is based on the covariance between one variable and the rank of the other. Hence for each pair of random variables, there are two Gini correlations and they are not equal in general, which brings a substantial difficulty in interpretation. Recently, Sang et al (2016) proposed a symmetric Gini correlation based on the joint spatial rank function with a computation cost of O(n2) where n is the sample size. In this paper, we study two symmetric and computationally efficient Gini correlations with the computational complexity of O(n log n). The properties of the new symmetric Gini correlations are explored. The influence function approach is utilized to study the robustness and the asymptotic behavior of these correlations. The asymptotic relative efficiencies are considered to compare several popular correlations under symmetric distributions with different tail-heaviness as well as an asymmetric log-normal distribution. Simulation and real data application are conducted to demonstrate the desirable performance of the two new symmetric Gini correlations.

Relational Format

journal article

DOI

10.1515/demo-2020-0020

Accessibility Status

Searchable text

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.